A Maximum Entropy Estimator for the Aggregate Hierarchical Logit Model
نویسندگان
چکیده
A new approach for estimating the aggregate hierarchical logit model is presented. Though usually derived from random utility theory assuming correlated stochastic errors, the model can also be derived as a solution to a maximum entropy problem. Under the latter approach, the Lagrange multipliers of the optimization problem can be understood as parameter estimators of the model. Based on theoretical analysis and Monte Carlo simulations of a transportation demand model, it is demonstrated that the maximum entropy estimators have statistical properties that are superior to classical maximum likelihood estimators, particularly for small or medium-size samples. The simulations also generated reduced bias in the estimates of the subjective value of time and consumer surplus.
منابع مشابه
A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator
Maximum entropy models are often used to describe supply and demand behavior in urban transportation and land use systems. However, they have been criticized for not representing behavioral rules of system agents and because their parameters seems to adjust only to modeler-imposed constraints. In response, it is demonstrated that the solution to the entropy maximization problem with linear cons...
متن کاملFinite-sample Properties of the Maximum Likelihood Estimator for the Binary Logit Model with Random Covariates
Contact Author: David E. Giles, Dept. of Economics, University of Victoria, P.O. Box 1700, STN CSC, Victoria, B.C., Canada V8W 2Y2; e-mail: [email protected]; Voice: (250) 721-8540; FAX: (250) 721-6214 Abstract: We examine the finite sample properties of the maximum likelihood estimator for the binary logit model with random covariates. Analytic expressions for the first-order bias and second-orde...
متن کاملA New Estimator of Entropy
In this paper we propose an estimator of the entropy of a continuous random variable. The estimator is obtained by modifying the estimator proposed by Vasicek (1976). Consistency of estimator is proved, and comparisons are made with Vasicek’s estimator (1976), van Es’s estimator (1992), Ebrahimi et al.’s estimator (1994) and Correa’s estimator (1995). The results indicate that the proposed esti...
متن کاملWorking Paper Series Categorical Data Categorical Data
Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...
متن کاملGeneralized Maximum Entropy Analysis of the Linear Simultaneous Equations Model
A generalized maximum entropy estimator is developed for the linear simultaneous equations model. Monte Carlo sampling experiments are used to evaluate the estimator’s performance in small and medium sized samples, suggesting contexts in which the current generalized maximum entropy estimator is superior in mean square error to two and three stage least squares. Analytical results are provided ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 13 شماره
صفحات -
تاریخ انتشار 2011